Convex comparison inequalities for non-Markovian stochastic integrals∗

نویسندگان

  • Jean-Christophe Breton
  • Benjamin Laquerrière
  • Nicolas Privault
چکیده

E[φ(X∗)] ≤ E[φ(X)], (1.1) ∗The third author acknowledges the financial support from NTU Start-Up Grant M58110087. †UMR 6625 CNRS Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France. ‡Laboratoire Analyse, Géométrie & Applications, UMR 7539, Institut Galilée, Université Paris 13, 99 avenue J.B. Clément, 93430 Villetaneuse, France. §Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, SPMS-MAS, 21 Nanyang Link, Singapore 637371.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Comparison Inequalities for Exponential Jump-diffusion Processes

Given (Mt)t∈R+ and (M ∗ t )t∈R+ respectively a forward and a backward exponential martingale with jumps and a continuous part, we prove that E[φ(MtM∗ t )] is non-increasing in t when φ is a convex function, provided the local characteristics of the stochastic logarithms of (Mt)t∈R+ and of (M∗ t )t∈R+ satisfy some comparison inequalities. As an application, we deduce bounds on option prices in m...

متن کامل

Comparing Brownian stochastic integrals for the convex order

We show that, in general, inequalities between integrands with respect to Brownian motion do not lead to majorization in the convex order for the corresponding stochastic integrals. Particular examples and counter-examples are discussed.

متن کامل

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

On Delay-Range-Dependent Stochastic Stability Conditions of Uncertain Neutral Delay Markovian Jump Systems

The delay-range-dependent stochastic stability for uncertain neutral Markovian jump systems with interval time-varying delays is studied in this paper. The uncertainties under consideration are assumed to be time varying but norm bounded. To begin with the nominal systems, a novel augmented Lyapunov functional which contains some triple-integral terms is introduced. Then, by employing some inte...

متن کامل

Convex concentration inequalities and forward-backward stochastic calculus

Given (Mt)t∈R+ and (M ∗ t )t∈R+ respectively a forward and a backward martingale with jumps and continuous parts, we prove that E[φ(Mt + M ∗ t )] is nonincreasing in t when φ is a convex function, provided the local characteristics of (Mt)t∈R+ and (M ∗ t )t∈R+ satisfy some comparison inequalities. We deduce convex concentration inequalities and deviation bounds for random variables admitting a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012